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Abstract

Purpose – The purpose of this paper is to focus on modeling buoyancy driven viscous flow and heat
transfer through saturated packed pebble-beds via a set of homogeneous volume-averaged
conservation equations in which local thermal disequilibrium is accounted for.

Design/methodology/approach – The local thermal disequilibrium accounted for refers to the solid
and liquid phases differing in temperature in a volume-averaged sense, which is modeled by describing
each phase with its own governing equation. The partial differential equations are discretized and
solved via a vertex-centered edge-based dual-mesh finite volume algorithm. A compact stencil is used
for viscous terms, as this offers improved accuracy compared to the standard finite volume formulation.
A locally preconditioned artificial compressibility solution strategy is employed to deal with pressure
incompressibility, whilst stabilisation is achieved via a scalar-valued artificial dissipation scheme.

Findings – The developed technology is demonstrated via the solution of natural convective flow
inside a heated porous axisymmetric cavity. Predicted results were in general within 10 per cent of
experimental measurements.

Originality/value – This is the first instance in which both artificial compressibility and artificial
dissipation is employed to model flow through saturated porous materials.
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Paper type Research paper

Nomenclature
Roman Symbols
A ¼ surface (m2)
B ¼ solid-phase matrix drag (kg/m2 s2)
ct ¼ pseudo-acoustic velocity (m/s)
Cmn ¼ internal edge coefficient (m2)
Cp ¼ specific heat at constant pressure

(J/kg K)
dp ¼ particle/sphere diameter (m)
g ¼ gravitational acceleration (m/s2)

k ¼ thermal conductivity (W/m K)
keff ¼ effective thermal conductivity

(W/m K)
n ¼ unit vector perpendicular to a domain

boundary
p ¼ static pressure (Pa)
r ¼ radius (m)
t ¼ time (s)
T ¼ temperature (K)
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u ¼ velocity vector (m/s)
V ¼ volume (m3)
x ¼ spatial position (m)

Greek symbols
a ¼ fluid-solid interface heat transfer

coefficient (W/m2 K)
e ¼ thermal radiative emissivity
1 ¼ porosity or void fraction
m ¼ coefficient of viscosity (kg/m s)
r ¼ density (kg/m3)
t ¼ viscous stress tensor (kg/m s2)

Superscripts
f, s ¼ fluid/solid phase
j ¼ general tensor notation spatial index

Subscripts
b ¼ homogeneous bed property on the

edge of the near-wall region
dp ¼ based on particle diameter
f, s ¼ fluid/solid phase
i, j ¼ general tensor notation spatial index
m, n ¼ discrete node number
w ¼ porous bed bounding wall
1 ¼ reference condition

Non-dimensional numbers
Nudp ¼ Nusselt number ðadp=kkf l f Þ
Pr ¼ Prandtl number ðkCpl f kmf l f =kkf l f Þ
Redp ¼ Reynolds number ðkrf l f 1 jkul f jdp=

kmf l f Þ

1. Introduction
The importance of accurately modelling single-phase flow through packed pebble beds
is ever more increasing with the advent of new generation packed bed nuclear and
catalytic reactors as well as modern electronic cooling systems. To date, several
modelling approaches exist, of which some significant ones are arguably pore-scale
modelling; a continuum approach using the so-called non-Darcy models; and a
volume-averaged continuum approach using a so-called generalised model.

Pore-scale modelling (Magnico, 2003; Pan et al., 2001; Morris et al., 1999) is still
prohibitively expensive when applied to realistic engineering systems which
involve randomly packed pebble beds. Capturing detailed interstitial flow
phenomena is however possible with this approach. The extended Darcy law
approach (non-Darcy models) is computationally most efficient, but has the
significant deficiency of not fully accounting for boundary and inertial effects
(Prasad et al., 1992). The volume-averaged model (also known as the generalised
model), initiated by Whitaker (1967), attempts at finding a compromise
between the accuracy and computational cost limitations of the aforementioned
methods. Here, microscopic volume-averaged governing equations are employed
in conjunction with empirical relations to account for pore- or micro-scale
phenomena.

Owing to the stated inherent advantages, generalised models are finding
increased application. Poulikakos and Bejan (1985), Nithiarasu et al. (1996) and
Nithiarasu et al. (1999) modelled buoyancy-driven flow in fluid-saturated
non-Darcian porous media. The latter authors also indicated that the model
reduces to the Navier-Stokes equations for porosity equal to one, and that it agrees
with the generalised model as used by Vafai et al. (1985). Kuipers et al. (1992)
applied the volume averaging technique to modelling gas-fluidized beds through a
continuum description of two fluids in suspension. The generalised-type model has
also been successfully applied to describe flow and heat transfer in packed bed
nuclear reactors (Becker and Laurien, 2003; van Staden et al., 2004; du Toit et al.,
2006; Verkerk, 2000).

In the context of employing the generalised model to simulating flow and heat
transfer through nuclear reactors, (Becker and Laurien, 2003) pointed out that the
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assumption of local thermal equilibrium between the solid phase and working fluid is
inadequate, necessitating multiple equations to enforce conservation of energy for the
respective phases. This technique is also supported by amongst others Gunn (1978),
Gidaspow (1986), Kuipers et al. (1992) and du Toit et al. (2006). Finally, the majority of
models mentioned assume fluid pressure-incompressibility.

Numerical schemes used to solve the generalised set of governing partial differential
equations vary significantly. Massarotti et al. (2001) applied finite element
discretization and a characteristic-based split (CBS) procedure to deal with the fluid
incompressibility and stability (Zienkiewicz and Taylor, 2000). When considering
finite volume based models, all work to date involves the cell-centered variant, where a
pressure correction (projection) method is employed to deal with pressure-velocity
coupling (Becker and Laurien, 2003; van Staden et al., 2004). In the context of modelling
flow through saturated packed pebble beds, an artificial compressibility
vertex-centered finite volume method has not to date featured. This is therefore the
first instance in which both artificial compressibility and the chosen stabilisation
scheme, viz. artificial dissipation, is employed to model flow through saturated porous
materials. Edge-based vertex-centered finite volume discretization is advantageous
when applying boundary conditions as well as in terms of computational efficiency
and applicability to hybrid-unstructured meshes (Malan, 2002). Furthermore, the
artificial compressibility scheme is sought because of its inherent memory efficiency
(Malan et al., 2002; Nithiarasu, 2003) and natural suitability to parallel environments,
while allowing for the mutual technology transfer with compressible time-marching
solvers.

In this paper, a homogeneous generalised-type governing equation is employed
to model buoyancy-driven flow in saturated packed pebble beds. Local thermal
disequilibrium is allowed for via describing the energy conservation of the fluid
and solid phases individually. Spatial discretization is effected with a compact
vertex-centered edge-based dual-mesh finite volume algorithm. The fluid phase is
considered pressure-incompressible and dealt with numerically through the use of
a recently developed locally-generalised-preconditioned artificial compressibility
technique (Malan et al., 2002). All material properties are assumed to be fully
non-linear functions of temperature. Scalar-valued (JST) artificial dissipation is
employed for the purpose of stabilisation. The compact stencil used for the viscous
terms is as developed by Crumpton et al. (1997) and applied by Malan (2002).
The developed modelling technology is validated via application to simulating
the SANA benchmark experiment (Niessen and Stöcker, 1997). Predicted
temperatures are compared to experimentally determined values for the purpose
of validation.

2. Governing equations
In this work, a homogeneous generalised-type governing equation set similar to that of
Vafai and Tien (1981) is employed. This involves the use of the volume-averaging
technique coupled with semi-empirical formulae, to describe natural convective flow
through saturated randomly packed rigid pebble beds. Similar to others (Kuipers et al.,
1992; Becker and Laurien, 2003; du Toit et al., 2006), a two-phase system is considered
and the following assumptions made:
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. On the volume-averaged scale the porous matrix is assumed isotropic.

. Viscous dissipation effects as well as the kinetic energy contribution to the fluid
total energy are assumed negligible. This is justified by the low Mach numbers
of the flow involved.

. In addition, all fluid material properties excluding specific heat, are variant with
respect to temperature.

. Solid material properties, with the exclusion of thermal conductivity, are
assumed invariant with respect to both temperature and pressure. The latter is
taken as variant with respect to temperature only.

. No chemical reactions occur.

. Heat transfer as a result of fluid dispersion is assumed negligible.

In addition to the above, it is assumed that there is no significant temperature gradient
within a specific pebble. This is due to steady-state natural convective flows being
considered.

All governing equations are written in terms of intrinsic microscopic
volume-averaged quantities. This is defined for a phase g as follows:

kfgl
g
¼ kfgl

g
ðt;xV Þ ¼

1

V g

Z
V gðxÞ

fgðt;xÞdV ð1Þ

where fgðt; x [ V gÞ denotes a scalar field which describes a property of the phase g
at a time t and spatial position x. Further, V gðxÞ is the volume over which averaging
is applied, with geometric center xV.

The system of governing equations now follows. These are written for a generic
rectangular/cylindrical 2D Cartesian coordinate system. The radius corresponding to
the cylindrical coordinate system is denoted r. The latter is aligned with the x1 axis,
and to be set as r ¼ 1 in the case of a standard 2D rectangular coordinate system.

Mass conservation of the fluid phase:

›ðrkrf l f Þ
›t

þ
›

›xj
ðrkrf l

f kujl f Þ ¼ 0 ð2Þ

where krf l f is the intrinsic microscopic volume-averaged density of the fluid, kujl f is
the intrinsic velocity component of the fluid in Cartesian coordinate direction xj.
Momentum conservation of the fluid phase reads:

›ðrkrf l f kuil f Þ
›t

þ
›

›xj
ðrkrf l f kujl f kuil f Þ þ r

›kpl f

›xi

2
›

›xj
ðrktijl f Þ2 rkrf l f kgil f 2

r

1
Bi þ d1ið1 2 di6Þkt33l f ¼ 0

ð3Þ

where kpl f denotes the intrinsically averaged fluid static pressure, ktijl f is the
microscopic volume-averaged viscous stress term, kgil f is the body force in direction xi
and Bi is the drag due to the solid matrix. The buoyancy force due to gravity is
accounted for via density being taken as an explicit function of temperature. Note that
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for a two dimensional cylindrical coordinate system z ¼ 0. Furthermore, application of
the governing equation set to a rectangular coordinate system requires z ¼ 1. Finally,
1 denotes porosity and is calculated as:

1 ¼ 1ðxV Þ ¼
1

V

Z
Vf ðxÞ

dV ð4Þ

where V is the spatial volume over which volume-averaging is applied. Finally, the
axi-symmetric stress term kt33l f is calculated as:

kt33l f ¼ 2
2

3
kmf l f

1

r

›

›x1
ðrku1l f Þ þ

›ku2l f

›x2

� �
þ 2kmf l f

ku1l f

r

� �
ð5Þ

where kmf l f is the intrinsic fluid phase dynamic viscosity.
The energy conservation equation for the fluid phase reads:

› rkrf l f kCpf l
f kTf l f

� �
›t

þ
›

›xj
rkrf l f kCpf l

f kTf l f kujl f
� �

2
›

›xj
rkkf l f

›kTf l f

›xj

� �
þ

6ð1 2 1Þ

1dp
ra kTf l f 2 kTsl

s� �
¼ 0

ð6Þ

where kCpf l
f , kkf l f and kTf l f are, respectively, the intrinsic specific heat, thermal

conductivity and temperature of the fluid. Further, a is the heat transfer coefficient
between the fluid and solid (pebble), kTsl

s is the average pebble temperature and dp is
the pebble diameter.

The energy conservation of the solid phase reads:

›

›t
rkrsl

skCps l
skTsl

s� �
2

›

›xj

rkeff
ð1 2 1Þ

›kTsl
s

›xj

� �
þ

6

dp
ra kTsl

s
2 kTf l f

� �
¼ 0 ð7Þ

where kCpsl
s, krsl

s and keff are, respectively, the solid-phase intrinsic specific heat,
density and superficial effective thermal conductivity between the pebbles. Note that a
and kTsl

s are as defined for the fluid-phase energy conservation equation.

2.1 Constitutive equations
As noted previously, in this work the pore scale or microscopic phenomena are
accounted for via volume-averaged constitutive equations. These are the solid matrix
drag B, fluid-solid interface heat transfer coefficient a and effective thermal
conductivity keff . The solid matrix drag is approximated using the vectorial form of the
Ergun (1952) relation as proposed by Radestock and Jeschar (1971):

Bi ¼ 2 150
ð1 2 1Þ2

1

kmf l f

d2
p

þ 1:75ð1 2 1Þ
krf l f

dp
jkul f j

 !
kuil f ð8Þ

where kmf l f is the fluid dynamic viscosity and jkul f j the local fluid velocity norm.
The volumetric heat transfer coefficient between the fluid and solid phases

(denoted a) in equations (6) and (7) is taken from the correlation of Gunn (1978):
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Nudp ¼ ð7 2 101þ 512Þð1 þ 0:7Re 0:2
dp

Pr 1=3Þ þ ð1:33 2 2:41þ 1:21 2ÞRe 0:7
dp

Pr 1=3 ð9Þ

where Nudp , Redp and Pr are, respectively, the Nusselt-, local Reynolds- and Prandtl

numbers. These are defined as:

Nudp ¼
adp

kkf l f
; Pr ¼

kCpf l
f kmf l f

kkf l f
; Redp ¼

krf l f dp1jkul f j
kmf l f

ð10Þ

Finally, the effective thermal conductivity (denoted keff ) in equation (7) is calculated
based on the model by Zehner and Schlünder (1970) in the form proposed by the
International Atomic Energy Agency – IAEA (2001). It is calculated as:

keff ¼ ksceff þ ksreff þ ksfeff ð11Þ

where the respective simultaneous modes of heat transfer accounted for are: heat
transfer due to solid-phase conduction and conduction across the contact interfaces
between pebbles ðksceff Þ; radiative heat transfer between and conduction through the
pebbles ðksreff Þ; and finally ksfeff accounts for conduction through the pebble solid material
as well as the stationary gas component filling the interstitial voids.

2.2 Boundary conditions
Both Dirichlet- and Neumann-type boundary conditions are applied to the domain
boundaries (a detailed schematic diagram follows in Section 4). The former includes
fluid no-slip conditions as well as prescribed temperatures for the fluid and solid
phases. The Neumann conditions include adiabatic and constant heat flux. In the case
of the latter, the fluid temperature is assumed representative of the actual wall
temperature[1] and the heat influx to the solid phase then prescribed with a
radiative-type boundary condition from the model of Schlünder, as documented by
Fundamenski and Gierszewski (1991, 1992):

qsolid ¼ 2keff
›kTsl

s

›xi
ni ¼ hr ðkTf l f Þ4 2 ðkTbl

s
Þ4

� �
ð12Þ

with:

hr ¼ s
1

e s
þ

1

ew
2 1

� �21

ð13Þ

where s denotes the Stefan-Boltzmann constant ð. 5:67 £ 1028 W=m2 K4Þ, e s and ew
are the emissivity of the solid phase and wall, respectively, and kTbl

s denotes the
solid-phase temperature on the edge of the near-wall region. The latter is defined as the
region extending from the wall to one sphere radius into the bed. Further, kTbl

s is
calculated by extrapolating linearly from the wall to a distance of half a sphere
diameter into the bed, perpendicular to the wall as:

kTbl
s <

›kTsl
s

›xi

����
w

ni

� �
2

dp

2

� �
þ kTsl

s
jw ð14Þ
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where the subscript w indicates property values at the wall and n is the
outward-pointing unit vector normal to the wall.

In completing the constant heat flux boundary condition, the fluid-phase heat flux is
now prescribed as:

21kkf l f
›kTf l f

›xi
ni ¼ qinput 2 qsolid ð15Þ

where qinput is the specified heat input to the physical setup and qsolid is the heat flux as
calculated in equation (12).

3. Solution procedure
In describing the solution procedure, it is instructive to write the system of governing
equations in the following form:

›W

›t
þ

›Fj

›xj
þ r

›H

›xj
2

›Gj

›xj
¼ S ð16Þ

where:

W ¼

rkrf l f

rkrf l f ku1l f

rkrf l f ku2l f

rkrf l f kCpf l
f kTf l f

rkrsl
skCpsl

skTsl
s

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
; Fj ¼

rkrf l f kujl f

rkrf l f ku1l f kujl f

rkrf l f ku2l f kujl f

rkrf l f kCpf l
f kTf l f kujl f

0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

H ¼

0

kpl f d1j

kpl f d2j

0

0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
; G j ¼

0

rkt1jl f

rkt2jl f

rkkf l f
›kTf l f

›xj

rkeff

ð121Þ
›kTsl

s

›xj

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA
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S ¼

0

rkrf l f kg1l f þ r
1
B1 2 ð1 2 d1zÞkt33l f

rkrf l f kg2l f þ r
e
B2

2 6ð121Þ
1dp

ra kTf l f 2 kTsl s
� �

2 6
dp
ra kTsl

s
2 kTf l f

� �

0
BBBBBBBBB@

1
CCCCCCCCCA

ð17Þ

where the nomenclature is as defined previously.

3.1 Spatial discretization
Spatial discretization commences by casting the governing equations into weak form,
followed by the transformation of volume integrals into surface integrals via the
application of the divergence theorem:Z

V j

›W

›t
dV þ

Z
Aj

Fjn jdA þ �r

Z
Aj

Hjn jdA 2

Z
Aj

Gjn jdA ¼ �Sj ð18Þ

Here, Aj is the surface bounding V j and n is the outward-pointing unit vector in the
direction normal to the boundary segment dA. Further, �r and �Sj, respectively, denote the
spatially averaged radius and source terms, where averaging is done with respect to V j.

The volumes or sub-domains over which are integrated are constructed on the mesh
as per Vahdati et al. (1989) (similar to Sørensen et al. (2002)). In two dimensions, this
involves connecting edge midpoints and element centroids such that only one node is
present in each control volume. This is shown schematically for a node m in Figure 1.
A volume (sub-domain) associated with a node m for instance, is designated Vm and
the bounding surface by Am.

The discrete form of a typical surface integral in equation (18), computed for the
volume surrounding a node m, reads:

Figure 1.
Schematic diagram

of the construction of the
median-dual-mesh

on hybrid grids

ϒmn

m

n

Note: Here ϒmn depicts the edge connecting nodes m and n
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Z
Am

Gjn jdA <
Ymn>Vm

X
G j

mnC
j
mn ð19Þ

where Gj is the flux value calculated at the edge centre and Ymn denotes all edges
connected to node m. The bounding surface information is stored in an edge-wise
manner. These are termed edge-coefficients (denoted Cj

mn in equation (19)) and in the
case of internal edges are defined as:

Cmn ¼ nmn1Amn1
þ nmn2Amn2

ð20Þ

where m and n denote the attached nodes and Amn1
is a bounding surface-segment

intersecting the edge. Storing information in an edge-wise manner is advantageous in
that one loop over edges computes all edge contributions whereas element-based
methods require the computation of each edge contribution at least twice (Luo et al.,
1994).

It is expected that buoyancy-driven flow through densely packed beds contains
regions which are highly diffusive on a volume-averaged level. The diffusive spatial
terms (second-order spatial derivatives) are therefore to be discretized in an accurate
manner, which does not suffer from odd-even decoupling. To this end, the edge-based
compact stencil algorithm developed by Crumpton et al. (1997) is employed and as
described by Lewis and Malan (2005).

3.2 Artificial compressibility
Having spatially discretized the set of governing equations, the following semi-discrete
expression results at a node m:

›W

›t

����
m

¼ RHSm ð21Þ

where RHS denotes the discretized spatial terms placed on the right-hand side. The
above expression is not solvable as fluid incompressibility yields it overly stiff. This is
addressed by employing the method of artificial compressibility (AC), and in a
consistent manner (Malan et al. (2002)) as follows:

›W

›Q

›Q

›t

����
m

¼ RHSm ð22Þ

where:

›W

›Q
¼

r
›krf l f

›kpl f 0 0 0 0

rku1l f
›krf l f

›kpl f rkrf l f 0 0 0

rku2l f
›krf l f

›kpl f 0 rkrf l f 0 0

rkCpf l
f kTf l f

›krf l f

›kpl f 0 0 rkrf l f kCpl f 0

0 0 0 0 rkrsl
skCps l

s

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

ð23Þ
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and:

Q ¼

kpl f

ku1l f

ku2l f

kTf l f

kTsl
s

0
BBBBBBBB@

1
CCCCCCCCA

ð24Þ

Artificial compressibility is introduced by replacing the term ›krf l f =›kpl f , which is
equal to 1=c 2 for compressible flow (where c is the acoustic velocity), with a
pseudo-acoustic velocity approximation 1=c2

t . Here, cr is designated the free AC
parameter which is to be calculated in an appropriate manner. Since the acoustic
velocity is altered, the time accuracy is destroyed and time t replaced with
pseudo-time tr. Following Malan et al. (2002), a locally generalised preconditioned
system results by defining the Jacobian term as follows:

›W

›Q

����
t

¼

r
ct

0 0 0 0

au
r u1h i

f

c2
t

r rf
� 	f

0 0 0

au
rku2l f
c2
t

0 rkrf l f 0 0

aT
rkCpf

l f kTf l f

c2
t

0 0 rkrf l f kCpf l f 0

0 0 0 0 rkrsl
skCps l

s

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð25Þ

where cr and au are calculated similar to Malan et al. (2002) and:

aT ¼
0 if au ¼ 0

1 if au . 0

(
ð26Þ

The above relation affects preconditioning of the fluid energy equation.

3.3 Stabilisation
The spatial discretization method outlined in Section (3.1) may result in non-physical
spurious oscillations due to the presence of convective terms. Stabilizing the convective
terms without loosing accuracy is done using the scalar-valued artificial dissipation
(JST) model as developed by Jameson et al. (1981). This involves adding an additional
artificial dissipation term to the semi-discrete system of equations (equation (22)),
resulting in the following expression for a node m:

›W

›Q

›Q

›t

����
m

¼ RHSm þDm ð27Þ

where Dm denotes the stabilizing term. The dissipation term is constructed through the
use of a biharmonic operator as per Mavriplis (1990):
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Dm ¼ 2C4
lm þ ln

2
Ymn>Vm

X
ð72Qn 2 72QmÞ ð28Þ

where C4 is an empirical constant and lm is an isotropic scaling coefficient at node m
which is calculated as:

lm ¼
Ymn>Vm

X
ju ·Cmnj þ ctjCmnj ð29Þ

The Laplacian 72Qm in equation (28) is approximated in a manner which is consistent
with the method employed for preconditioning (Malan et al., 2002):

72Qm ¼
Ymn>V m

X ›W

›Q

����
mn

ðQn 2QmÞ ð30Þ

where ›W=›Q
��
mn

is the edge averaged Jacobian term. Note that the vector Q in the
above equation denotes the incompressible flow dependent variable (equation (24)).

3.4 Temporal discretisation and solution procedure
The pseudo-temporal terms are discretized using an explicit single-stage
time-marching method. A multistage Runge-Kutta time-stepping scheme initially
implemented, was found to result in no computational advantage. This is as the latter
was found to be advantageous when applied to convection-dominated flows, whereas
the flow considered in this work is predominantly diffusive in nature.

4. Numerical tests
The developed numerical technology is validated by application to a benchmark
problem viz. the SANA test setup at the Jülich Research Center (Niessen and Stöcker,
1997). The setup, which is shown schematically in Figure 2, consists of a cylindrical
vessel which is 1 m in height with inner and outer radii of 0.071 and 0.75 m,
respectively. The vessel is filled with 60 mm randomly packed graphite pebbles and
filled with either helium[2] or nitrogen and pressurised to 1 bar. The heat input to the
system is via a centrally placed electrical heater, spanning various fractions of the total
height. The following two test conditions were selected for the purpose of validating
the accuracy of the developed modelling technology:

(1) Steady state test with heating element spanning the full length of the pebble bed
and helium as the working fluid. The selected nominal heating power input is
5 kW.

(2) Similar operating conditions to the aforementioned, with the exception of a
heating power input increase to 35 kW.

Note that the above two test cases were selected, as these represent the two extremes
in terms of total heat input. Further note that mesh independent solutions (to within
2 per cent) are quoted in all cases[3].

The heat transfer processes to be modelled are the influx of heat from the inner wall
to both the working fluid and solid pebbles, conduction and radiative heat transfer
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within the solid phase, convective heat transfer between the solid and fluid phase whilst
conduction and convective heat transfer are the modes of heat transfer within the fluid
phase. The top and bottom walls are insulated and therefore treated as adiabatic.

The above was described by solution of the stated governing equations on a
two-dimensional axi-symmetric domain to which the following boundary conditions
were applied (Figure 3):

. No-slip boundary conditions are applied to all the walls.

. The top and bottom walls are treated as adiabatic.

. A constant uniform heat flux is applied to the inner wall (5 kW:
9.7976 £ 103 W/m2, 35 kW: 7.22857 £ 104 W/m2).

. A constant temperature field is applied to the outer wall. For this purpose,
temperatures applied are taken from the experimental measurements
(Niessen and Stöcker, 1997) (5 kW: T1ðx2Þ ¼ 250:6x2

2 þ 64:0x2 þ 338:8 ðKÞ,
T1ðx2Þ ¼ 2187:4x2

2 þ 205:7x2 þ 520:2ðKÞ).

The temperature-dependent material properties for helium are as prescribed by the
Nuclear Safety Standards Commission (KTA, 1978), while the material properties for
graphite are from the IAEA (2001) and Niessen and Stöcker (1997). The mesh for both
the 5 and 35 kW test cases is shown in Figure 2 (right). It contains 9,296 elements with
local refinement near the walls to capture the larger velocity gradients expected in
these regions as a result of the no-slip boundary condition employed. Note that in this
work it is not expected that wall-channeling effects will be accurately modelled due to

Figure 2.
Schematic diagram of the

SANA test-setup (left)
with central heating

element (Niessen and
Stöcker, 1997), and the

representative
axi-symmetric mesh used

(right)
x1

x 2
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the simplifying assumption of homogeneous porosity. The proper modelling of these is
noted for further work via a fully heterogeneous model.

The calculated velocities at a section through the vertical centreline of the vessel are
shown in Figure 4. Note that although the authors are not aware of any definitive
numerical or experimental data with which to compare the calculated velocities, the
spatial discretization error was eliminated via mesh independence. The velocity peak
of the 35 kW case is substantially lower and less sharp than that of the 5 kW test.
This is attributed to the increase in viscosity of the helium at the elevated

Figure 3.
Schematic diagram of the
geometry and boundary
conditions applied

Inner Wall Outer Wall

Adiabatic Walls
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Note: Here ri and ro denote, respectively, the internal and external radius and q the specified heat
influx(W/m2)

Figure 4.
Calculated vertical
velocities in radial section
at 0.5 m vertical elevation,
for 5 kW (left) and 35 kW
(right)
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temperatures. The velocity distributions are non-symmetrical as a result of the
axi-symmetric geometry as well as the temperature dependence of the material
properties. Figure 5 shows the natural convection currents present inside the vessel,
with the streamlines indicating the direction of the velocity vectors.

The predicted pebble temperature distribution at three different heights are
compared to measurements in Figure 6. The calculated values are seen to compare
reasonably well with experimental data. Agreement between the slope of the predicted
temperature distribution and experimental data indicates that the effective thermal
conductivity is calculated to within acceptable limits. Note the large difference in
temperature reach for the respective cases, which explains the large difference in fluid
properties leading to the counter-intuitive velocity distributions noted in Figure 4.

Figure 7 shows the large deviations between the predicted solid and fluid
temperatures that occur close to the hot inner wall. This is due to local thermal
disequilibrium being allowed for. The predicted fluid and solid temperatures in the
central region of the pebble bed are however almost identical (this is more so for the
5 kW case). A similar observation to the aforementioned was made by Becker and
Laurien (2003) for the steady 35 kW helium test case, where a maximum deviation of
less than 10 K was recorded between the solid and fluid phases at spatial locations
removed from the near-wall region.

In Figure 8, the deviation between the predicted and measured solid-phase
temperatures, presented as a normalized temperature deviation, is shown. The
aforementioned is calculated as follows:

DkTsl
s
normalized ¼

kTsl
s
predicted 2 kTsl

s
measured

��� ���
kTsl

s
max 2 kTsl

s
min

ð31Þ

Figure 5.
Flow streamlines for the

5 kW (left) and 35 kW
(right) cases
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where kTsl
s
max and kTsl

s
min are, respectively, the maximum and minimum temperatures

measured in the bed. The maximum normalized disparity between the predicted and
measured data is seen to be 0.18, which is located close to the inner wall. It is hoped that
this may be improved upon in future work by properly accounting for porosity
variation in the near-wall region (via a heterogeneous model). Finally, the average
normalized temperature difference (calculated using all data points), are 0.035 and
0.032 for the 5 and 35 kW cases, respectively. This corresponds to a 3.5 and 3.2 per cent
average deviation, which is considered to be commendable.

The average residual plots for the respective test cases are shown in Figure 9, where
the residual is calculated as the Euclidean norm of the RHS in equation (22). The six
orders of magnitude monotone drop in residual is an indication that the developed
modelling technology is sound with regards to convergence and stability.

Figure 6.
Predicted pebble
temperature distribution
compared to experimental
(exp.) measurements for
5 kW (left) and 35 kW
(right)
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Comparing predicted
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5. Conclusion
This paper detailed modelling buoyancy-driven flow through saturated packed pebble
beds. A generalised volume-averaged partial differential governing equation set was
employed, and such that local thermal disequilibrium between fluid and solid phases
was allowed for. A homogeneous porosity distribution was assumed and material
properties taken as fully non-linear with respect to temperature. A compact
vertex-centered finite volume spatial discretization scheme was employed and fluid
incompressibility dealt with via an artificial compressibility method. The modelling
technology was validated by application to modelling a benchmark experiment viz. the
SANA test setup. Comparing the simulated- and experimental data indicated an
acceptable correlation, with the maximum and average normalized deviations being
0.18 and 0.035, respectively. The aforementioned is located close to a near-wall region,

Figure 8.
Normalized temperature

disparity of the predicted
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temperatures for the 5 kW
(left) and 35 kW (right)
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Average residual for 5 kW
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where porosity variation is dramatic. Future work is recommended to obtain more
accurate solutions here via the use of a fully heterogeneous model.

Notes

1. The fluid-wall temperature equivalence is an approximation in this work due to the constant
porosity assumption.

2. The pebbles, packing arrangement and stated working fluid are identical to that found in
high temperature gas-cooled nuclear reactors, making the chosen test an important
benchmark problem in this context.

3. The quoted percentage refers to the deviation of the dependent variables when doubling the
mesh size.
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